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Daniel L. Nickrent® and
Douglas E. Soltis®

A COMPARISON OF
ANGIOSPERM PHYLOGENIES
FROM NUCLEAR 18S rDNA
AND rbel. SEQUENCES!

ABSTRACT

Ta investigate the phylogenetic utility of entire, nuclear-encoded small-subunit (188) rihosomal DNA sequences,
we compared the rate of evolution and phylogenetic resolution of entire 185 sequences with those for the chloraplast
gene rhel using a suite of 59 angiosperms and 3 gymnosperms (Gretum, Ephedra, and Zemia) as outgraups. Far
rbel, 482 (33.6%) of the 1431 base positions were phylogenetically informative, whereas for 185 rDNA 341 (18.4%)
of the 1853 positians were informative. Pairwise comparisons within the angiosperms show that rbeL is generally
about three times more variable than 185 rDNA. However, because the 185 region is approximately 400 base pairs
longer than rkcL, the ratia of the number of phylogenetically informative sites per molecule is only ahout 1.4 times
greater for rbcL compared to 185 rDNA. Not only are sites more variable in rbeL than in 185 rDNA, but this
variability is more evenly distributed over the length of rbeL. In contrast, 185 rDNA shows highly variable regions
interspersed with regions of extréme conservation. Minimum-length Fiteh trees were constructed for each matrix,
and the results were compared to a tree derived from a previous global analysis of rbeL sequences based on 499
seed plants. Parsimony analyses showed that several clades are strongly supparted by both data sets, such as Gnetales,
monocaots, palecherbs, Santalales, and various clades within Rosidae s.|. and Asteridae .- Some clades (¢.g., Santalales)
have higher base substitution rates for 185 rDNA, permitting the assessment of inter- and intrafamilial relationships.
This comparative study indicates that 183 rDNA sequences contain sufficient information to conduct phylogenetic
studies at higher taxonomic levels (family and above) within angiosperms. tDNA sequences are best applied to such

deep divergences, but the amount of variation differs significantly among taxonomic groups.

The major morphologically based angiosperm
classifications proposed during the past 15 years
show marked similarities, yet alse differ in funda-
mental ways. Recently, systematists have explored
the utility of both DNA and RNA sequencing to
resolve highier-level relationships within the angio-
sperms, as well as seed plants in general (e.g.,
Hamby & Zimmer, 1992; Chase et al, 1993).
The largest molecular phylogenetic study econ-
ducted to date (Chase et al., 1993) employed se-
quence data for the chloroplast gene rbel and was
hased on sequences for 499 species of angiosperms
and other seed plants. The gene rbel is typically
1428 base pairs in length, and the advantages of
using this gene in phylogenetic reconstruction have
been thoroughly reviewed (e.g., Ritland & Clegg,
1987; Palmer et al., 1988; Chase et al., 1993).
These advantages include easy amplification via
the polymerase chain reaction, essentially no in-
sertion-deletion events, appropriate length and base

substitution rate for inferring phylogeny at higher-

levels, and the availability of a set of sequencing
primers (provided free of charge hy G. Zurawski).
Although some variation in the rate of rbcL se-
quence evalution occurs from lineage to lincage
{Bousquet et al., 1992;.Gaut et al., 1992), unequal
rates of evolution do not appear to be sufficient to
abscure major phylogenetic relationships (Chase et
al., 1993). Because of these numerous advantages,
rbeL sequences now exist for over 1500 taxa (M.
Chase, pers. comm.), making rbcL the most fre-
quently sequenced protein-coding gene. During the
past several years, the phylogenetic analysis of
rbel. sequences has provided unprecedented in-
sights into higher-level relationships in angiosperms
and gymmosperms (e.g., Chase et al., 1993; Conti
et al., 1993; Duvall et al., 1993; Michaels et al.,
1993; Morgan & Soltis, 1993; Qiu et al., 1993).

Because most evalutionary studies are devoid of
positive contrals to prove or disprove particular
events, the strongest support that can be obtained
in phylogenetic reconstruction is congruence re-
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sulting from analysis of multiple independent data
sets (Miyamoto & Cracraft, 1991). Hypotheses of
relationships are either strongly or weakly sup-
ported based upon statistical tests involving the
data themselves (e.g., consistency index, bootstrap
values, decay values). The more numerous and
more varied the data sets that corroborate a given
relationship, the greater the support for that re-
lationship. Although rbeL and, more recently, oth-
er chloroplast genes such as matK (see Johnson
& Soltis, 1995, this issue) and ndhF (see Olmstead
& Reeves, 1995, this issue) have been shown to
have great utility in phylogeny estimation, many
workers have emphasized the need for comparison
of chloroplast DNA-based phylogenetic trees with
those from other sources, especially those based
on sequences from nuclear-encaded genes {e.g.,
Palmer, 1985; Rieseberg & Soltis, 1991; Doyle,
1992; Friedlander et al., 1992; Chase et al., 1993).
At lower taxonomic levels (genus and below) com-
parative sequencing of the nuclear internal tran-
scribed spacer (ITS) region has shown tremendous
potential for inferring phylogenies (see Baldwin et
al., 1995, this issue) and has stimulated the com-
parison of phylogenies hased on chloroplast and
nuclear DNA. At higher taxonomic levels, the phy-
logenetic trees presented for angiosperms based on
rbeL sequences (Chase et al., 1993) have similarly
stimulated interest in conducting a comparahle
phylogenetic “analysis hased on nuclear gene se-
quences. In this paper we explore the utility of
entire nuclear 1853 tDNA sequences for inferring
phylogény at higher levels within the angiosperms.

In plants, ribosomes exist in the chloroplasts,
mitochondria, and cytoplasm and are ecomposed of
a gmall and a large subunit, each of which contains
rRNA and associated proteins. Although sedimen-
tation coefficients vary slightly, plant nuclear small-
subunit rRNA will be referred to here as the 183
rRNA. The 185, 5.85, and 265 nuclear rRNA
genes occur as a unit {cistron) separated by spacer
regions. These cistrons are repeated hundreds to
thousands of times in tandem arrays within the
genome (Appels & Honeycutt, 1986). Ribosomal
RNA cistrons are usually located in the nucledlar
organizing region of the nucleis and may reside
on several different chromosomes in plants
(Thompson & Flavell, 1988). Sequence similarity
between the individual cistrons within a single or-
ganism is extremely high, possibly due to unequal
erossing over during meiosis, gene conversion, slip-
page, transposition, and BRNA-mediated changes
{Arnheim et al., 1980; Dover, 1982; Arpheim,
1983; Daover, 1987). The homogeneity of riho-

somal RNA cistrons has been referred to as con-

certed evolution (Brown et al., 1972; Arnheim et
al., 1980; Zimmer et al., 1980). Ribosomal loci
represent an extreme type of concerted evolution
(with essentially complete homogenization), making
them advantageous for reconstruction of deep phy-
logenetic events (Sanderson & Doyle, 1993). Re-
cent summaries of ribosornal RNA satructure, func-
tion, gene organjzation, and evolution have been
presented (Jorgansen & Cluster, 1988; Hillis &
Dixon, 1991; Hamby & Zimmer, 1992).

Numerous low-malecular-weight (55 and 5.85)
rRNA sequences now exist {see compilation by
Specht et al., 1991), and attempts have been made
to use these sequences in addressing the origin and
evolution of green plants (Hori et al., 1985; Hori
& Osawa, 1987). However, because these mole-
cules are Jess than 200 bp in length, they provide
a very limited number of phylogenetically infor-
mative sites; hence, large numbers of equally par-
simonious solutions often result when conducting
studies using many. taxa {Bremer et al., 1987).
Specifically addressing 55 rRINA sequences, Mish-
ler et al. (1988) summarized concerns for the use
of rRNA sequences for phylogenetic reconstruction
that apply to the 185 and 265 as well, such as
cosuhbstitution in stem regions of helices, transition/
transversion bias, alignment problems, different
evolutionary rates, and homoplasy,

Both large- and small-subunit ribosomal RNA
sequences have been used to“examine the very
deepest branches among organisms, such as the
domains Eukarya, Bacteria, and Archae (Wolters
& Erdmann, 1986; Olsen, 1987; Woese, 1987).
Ribosomal RNA sequence data have also been used
to elucidate phylogenetic relationships in animals
(e.g., Sogin et al., 1986; Field et al., 1988; Wada
& Satch, 1994}, protozoa (Schlegel et al., 1991),
algae (Bhattacharya & Druehl, 1988; Buchheim
et al., 1990; Huss & Sogin, 1990; Kantz et al.,
1990; Hendriks et al.,, 1991; Chapman & Buch-
heim, 1991}, and fungi {Férster et al., 1990; Swann
& Taylor, 1993). Prior to 1990, mast rRNA se-
quences were being determined from cloned ma-
terial or by using Sanger dideoxynucleotide reac-
tions and reverse transcriptase with rRNA templates
(Lane et al., 1985). During the past several years,
most workers have moved to direct sequencing of
ribosomal DNA (rDNA) amplified via the poly-
merase chain reaction (PCR; Mullis & Faloona,
1987). The major reasons for the shift to DNA
sequencing are: (1) rRNA is labile to RNases, mak-
ing it methadologically difficult to extract, purify,
and store; (2) TRNA secondary ‘structure causes
polymerase stalling, visualized as “*hard stops™ on
sequencing gels, resulting in ambiguous sequence;
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(3) when RNA is extracted from a tissue sample
only RNA genes can be sequenced, whereas, the-
oretically, any gene (nuclear, plastid, mitochon-
drial) is available from total genomic DNA extracts;
(4) DNA is easier to extract and is more stable
than RNA; and (5) with DNA, both strands are
available for sequencing, allowing more complete
caverage of the molecule {as well as an opportunity
to double-check each base pasition} by using prim-
ers designed for both the coding and noncoding
strands.

The first 185 ribosomal RNA sequences of an-
giosperms were of rice (Takaiwa et al., 1984),
maize {Messing et al., 1984}, and soybean (Eck-
enrode et al., 1985). Later, the complete 183
rDNA sequence of the cycad Zamia pumila was
published; with the above three higher plants and
several outgroups, a phylogenetic tree was pro-
duced (Nairn & Ferl, 1988). Seven additional {par-
tial) 185 rRNA sequences’of members of the Po-
aceae were later determified, and a phylogenetic
apnalysis of this family was conducted (Hamby &
Zimmer, 1988).

- Phylogenetic relationships in the parasitic plant
order Santalales were examined by Nickrent &
Franchina (1990). This study was the first since
the work by Nairn & Ferl (1988) to use essentially
complete 185 rRNA sequences in a phylogenetic
analysis. Sequences from 13 angiosperm species
representing 10.families were analyzed, and one
most parsimonious tree was obtained that supparted
the monophyly of the order Santalales, confirmed
the basal position -of Olacaceae within the order,
and showed Viscaceae to be derived from Santa-
laceae. This. study indicated that sufficient infor-
mation exists in complete 185 rRNA sequences to
allow phylogenetic comparisons to be made at the
faily level and above.

Despite the phylogenetic promise of these initial
analyses, relatively few 185 rBRNA sequences were
determined in the years that followed, perhaps due
in part to the tremendous interest in rbeL sequenc-
ing for inferring phylogeny at this same level. As
a result, the phylogenetic potential of 1885 sequence
data remained unexplored. A few entire sequences
were published, including Alnus glutinosa (Savard
& Lalonde, 1991), drabidopsis thalliana (Un-

fried et al., 1989), Lycopersicon esculentum (Kiss.

et al,, 1989), and Sinapis alba (Rathgeher &
Capesius, 1990). A sequence for Fragaria x an-
anassa (Simovic et al.,, 1992) exists, but contains
a large number of base changes atypical of other
Rosaceae {and was therefore not included in the
present study). Several studies, however, explored
the phylogenetic potential of partial 1835 sequences.

For example, Troitsky et al. (1991} used five dif-
ferent TRNA malecules {including nuclear 188
rRNA) to examine the early evolution of seed plants.
For 185 rBNA, 2} sequences representing 256
bp (from position 499 ta 755 on Glycine} were
used. Six dicots and eight monacots were included,
as were Ephedra and Gretum, two cycads, two
gymnosperms (Podocarpus and Taxus), and Ly-
copodium. Twao conclusions of this study were that
the divergence of angiosperms from gymnosperms
occurred hefore the early Carboniferous, ie., at
least 360 million vears before present, and that
the Gnetapsida are not monophyletic. Given the
small number of base pairs used and that no sta-
tistical support for the clades was provided, these
results must be viewed with caution. More recently,
Chaw et al. {1993) used 185 rDNA sequence data
to demonstrate support for the placement of Taxus
in Coniferales; hawever, only four sequences (for
Taxus, Pinus, Podocarpus, and Ginkgo) and an
outgroup {Zamia) were used in the analysis.

By far the largest analyses of 185 sequences
have heen undertaken by Zimmer and her collah-
orators, who conducted phylogenetic studies using
direct sequencing of rRNA from approximately 60
vascular plant species (Zimmer et al., 1989; Ham-
by & Zimmer, 1992). Their efforts toward pro-
ducing a molecular phylogeny of the angiosperms
were based on the sequencing of a portion of the
small- (188) and large- {268) $ubunit rRNA mol-
ecules. Hamby & Zimmer (1992) used a total of
1701 base positions per taxon (1097 base positions
from the 185 reglon and 604 positions from the
268 region) in a phylogenetic analysis of seed plants
that included 29 dicot and 17 monaocot genera.
Two shortest trees were found with a large number
of equally parsimonious solutions one or several .
steps longer. The shortest trees had a number of
features in accord with various existing classifi-
cations, such as the presence of a monophyletic
Gnetales clade as sister to the angiosperms, and
the hasal pasition within the angiosperms of several
Magnoliid groups, such as Nymphaeaceae and Pi-
peraceae. Sampling within nonmagnoliid groups was
sparse, however, which could explain the unusual
relationships suggested among more derived an-
giospermas (e.g., the presence of a clade composed
of Ranunculus, Duchesnea, Spinacia, and Stel
laria). Because many of the interior and basal dicot
nodes were poorly supported in the rRNA tree,
systematists remained unsure of the utility of ri-
hosomal RNA sequences for resolving questions of
angiosperm phylogeny. More récently, relation-
ships among the tribes of Onagraceae were ex-
amined by Bult & Zirmmer (1993) using partial
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sequences of 185 and 265 rRNA. Although rela-
tively few phylogenetically informative sites were
found, several relationships were in accord with
those revealed by rbeL analysis (Conti et al., 1993).

Using the same primers as the Zimmer group,
Martin & Dowd {(1991) obtained partial 185 and
265 rRNA sequences for 12 angiosperm species
from 7 families. Their purpose was to assess the
relative merits of phylogeny estimation using ri-
hosomal sequences with those derived from rbeL.
The authors concluded *“‘both phylogenetic trees
gave good grouping within families but in neither
case was there resolution of the branching order
of major taxa....” The authors further stated
“that neither macromalecule alone was likely to
yield a solution to the problem of angiosperm phy-
logeny and therefore that studies of hoth, at least,
will be required.” However, aside from twa familial
placeholders, only two species (maize and rice) were
shared by the two data sets; furthermore, taxon
density was cleaxly a lmutatn‘.‘rn in making any state-
ments regarding the hranchm.g arder of major taxa.
Additional studies using partial 185 rRNA sequenc-
as include analyses of six angiosperm families (Boul-
ter & Gilroy, 1992), Papilionaceae (Martin & Dowd,
1993), and Byblidacae—Roridulaceae (Conran &
Dawd, 1993). The lattex study examined the phy-
logenetic placement of two carnivorous genera,
Roridula and Byblis, that have been variously
classified using-marphological and chemical char-
acters. The analysis of partial 18S rRNA sequences
from these genera and 26 other angiosperms sup-
ported the position of Roridula in the lower Ros-
idae and the placement of Byblis in the Asteridae,
results in agreement with rbel sequence analysis
{Albert et al., 1992).

The major goal of this study was to explore in
more detail the potential of entire 185 rDNA se-
quences for inferring phylogeny at higher levels in
the angiosperms. We wanted to understand better
the rate of evolution and distribution of hase sub-
stitutions of 1858 rDNA compared to the widely
used chloroplast gene rbel. To accomplish these
objectives, comparable 185 and rbel. sequence
data sets were constructed for a similar suite of
59 angiosperms and 3 gymnosperms. Minimum-
length Fitch trees were constructed, and relation-
ships as well as evolutionary rates were compared
for the entire 185 gene and rbeL. These phyloe-
genetic analyses were not meant to be exhaustive
studies of angiosperm relationships; we recognize
that taxonomic density is a limitation in this study.
Rather, our goal was to assess the relative merits
and attributes of each molecule through direct com-
parison. This study differs from previous compat-

ative analyses of 188 and rbel sequences (e.g.,
Martin & Dowd, 1991} in that essentially complete
sequences of both genes were used, taxon sampling
was more extensive, and, in the majority of cases,
the same taxon was sequenced for both genes.

MATERIALS AND METHODS
TAXON SAMPLING AND SEQUENCE AGQUISITION

Given the large, taxonomically diverse array of
rbcL sequences that is already available, taxon
inclusion. for this study was determined mainly by
the availahility of 185 rRNA or rDNA sequences.
We therefore determined the 188 xDNA sequences
of additional plant taxa to provide greater coverage
of the major clades identified in the global rbeL
analysis of Chase et al. (1993). The rbcL sequences
were chosen to correspond at the specific or, sec-
ondarily, the generic level to an availahle sequence
of 185 rRNA. Some rbel. sequences included in
Chase et al. (1993), but not deposited in Genbank,
were kindly provided hy Mark Chase (Brassica,
Pachysandra, Pisum, and Impatiens). An rbel,
sequence of Hydrocotyle that was not included in
the Chase et al. analysis was alse kindly provided
by G. Plunkett. The original rbel sequence for
Zea contained errors; hence the newly determined
sequence (Gaut et al., 1992) was ysed herein. In
addition to the three published rbcL sequences of
Santalales (Morgan & Soltis, 1993), 12 other rbcL
sequences were determined to increase sampling
within this one order, thereby allowing phylogeny
comparison of moré closely related species using
hoth molecules. A data set of 62 taxa was ultimately
identified for which sequences of both malecules
were available for use in this study (Tables 1 and
2). Of the 62 sequence pairs (183 rDNA and rbel)
used herein, 37 were from the same species; an
additional 15 sequences were from different species
within the same genus. Different genera were used
for ten families to allow a broader sampling within
the angiosperms (rbcL/18S rDNA): Retula/Al-
nus, Packysandra/Buxus, Convolvnlus/Cuscu-
ta, Polemonium/Gilia, Pisum/Glycine, Lamber-
tia/Knightia, Reinwardtia/ Linum, Byrsonima/
Malpighia, Pyrola/Monotrope, and Mahonia/
Podophylium. Although members of three of the
above generic pairs are classified in separate fam-
ilies (i.e., Cuscutaceae/Convolvulaceae, Monatro-
paceae/Pyrolaceae, Podophyllaceae/Berberida-
ceae), they were deemed to be related closely enough
(based upon traditional classifications) to be used
as placeholders. Following Croﬁquist (1981), 47
angiosperm. families are represented in this study.

Seven of the 62 185 rDNA sequences used in
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this study were previously published by workers
other than the authors (Table 1). With the excep-
tion of six sequences that were obtained via direct
sequencing of rRNA using reverse transcriptase
{Nickrent & Franchina, 1990), all of the remaining
rDNA sequences were derived from PCR products.

AMPLIFICATION AND SEQUENCING

The genomic DNAs used for amplification and
sequencing of 188 rDNA and rbel. were extracted
using a modification of the hot CTAB method (Doyle
& Doyle, 1987; Nickrent, 1994). Plant samples
were derived from either fresh, silica gel-dried, ar
herbarium material. The PCR protocols emplayed,
as well as the oligonucleatide primers used for the
amplification and subsequent sequencing of rDNA,
are provided in Nickrent (1994) and Nickrent &
Starr (1994). The general PCR strategy and am-
plification primers used for rbel. are provided in
Morgan & Soltis (1993). For both rbcl and 188
rDINA, the first author employéd direct sequencing
of double-stranded PCR products. These products
were prepared for sequencing by gel purification
whereby the PCR bands are bound to DEAE mem-
branes, eluted, and precipitated in ethanal. DNA
so prepared is denatured at 100°C and snap-caoled
for primer annealing. In contrast, the second au-
thor used each of the two PCR primers individually
to generate single-stranded DINA fram the double-
stranded PCR prodicis. Single-stranded 185 and
rbel DN As were then purified by precipitation with
20% PEG/2.5 M NaCl, as described by Morgan
& Soltis (1993). In all instances, the chain-ter-
mination method of sequencing was employed
(Sanger et al., 1977) using [%5] dATP and the
Sequenase® version 2.0 kit. DNA fragments were
separated in 6% acrylamide gels; gels were sub-
sequently fixed and used to expose film using stan-
dard techniques. Compressions and other struc-
ture-related artifacts were resolved either through
the use of alternative nucleotides {deaza-dGTP,
dITP) or by sequencing the same region on the
complementary strand.

SEQUENCE FEATURES AND MULTIFLE ALIGNMENTS

All alignments were initially conducted on a SUN
Spark Station running the Genetic Data Environ-
ment (GDE, version 2.2; Smith, 1992). These

alignments were downloaded to a Macintosh com-
puter and directly imported mto MacClade {version
3.01; Maddison & Maddison, 1992). Far each
molecule, the chart features of MacClade were used
to examine patterns of variability and conservation,
transition/transversion bias, and {for rbcL) the
number of changes per cadan position. This pro-
gram was also used to determine the number of
phylogenetically informative sites for each align-
ment. MacClade files were saved in Nexus farmat
and then imported into PAUP (version 3.1; Swof-
ford, 1993) for parsimony analyses. Files contain-
ing the complete alignments of both molecules are
available from both authors by sending a formatted
3.5-inch diskette.

The alignment of rbeL sequences is straightfor-
ward and can be accomplished easily by sight be-
cause very few length mutations exist. In contrast,
tDNA sequence alignment was performed as an
iterative process that simultaneously dealt with
phylogenetic relationships, compensatory muta-
tions, and higher-order structure. The higher-order
tRNA structure of Glycine max (Fig. 1), like the
recently proposed stritture for Rafflesia keithii
(Nickrent & Starr, 1994}, is similar to the one
given for maize by Gutell et al. (1985} but includes
the structural changes proposed for yeast (Gutell,
1993) and eukaryotes (Neefs et al., 1993). This
structure differs somewhat from that proposed by
Senecoff & Meagher {1992), whifh was based
largely on a mammalian madel. The soybean struc-
ture given here was used as a reference for ex-
amining structural variation in the ather plant spe-
cies examined and as a gujde during the alignment
process.

Until recently, the secondary structure of rRNA
made direct sequencing of this molecule very dif-
ficult and aroused some criticism over the utility
of rRNA for phylogenetic reconstruction in plants,
With the advent of PCR, the amplification and
sequencing of rDNA is no more difficult than for
other genes (Nickrent & Starr, 1994}. Further-
more, secondary strueture provides much-needed
corroboratory information regarding base pairing
and compensatary base changes that is essential in
praducing alignments that reflect proper base ho-
malogy.

The 18S rDNA sequences obtained were ap-
proximately 1770 base pairs in length. Published

Ficure 1.

—

Proposed secondary structural model for the small-subunit (188) ribosomal RNA of Glycine max. The

primary saquence of soybean was determined by Eckenrade et al. (1985). This structural model follows the general
models proposed by Gutell et al. (1985) for Zea, Gutell (1993) far Saccharomyces, and Neefs et al. {1993) for
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eukaryotes in general. Helix numbering carresponds to Neefs et al. (1993). The structure for helix 6 (V1 region)
fallows Gutell (1993), with the alternative interpretation accarding to Neefs et al. (1993). The structure for the V4
region follows Nickrent & Sargent (1991). For an alternative model of the V4 involving a pseudoknot between helices
E23.8 and E23.9, see Neefs et al. (1993). The V6 region is absent in eukaryotes. Tertiary interactions are indicated
by thick lines.
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complete 185 rDNA sequences of higher plants
vary in length fram 1800 to 1813 base pairs (mean
of 1807 base pairs); thus, in this study, 97.9% of
the total length of the molecule was obtained for
most taxa. Owing to alignment spacers (“-"), the
total length of the matrix was 1853, Insertion/
deletion events (indels) were treated as missing
data. Certamn regions of 185 rDNA are variable in
pritmary sequence and length, such as the termini
of helices E10-1, E23-1, and 49 (Fig. 1). These
regions confound unambiguous alignment; hence
positions 227-239 and 676685 on the alignment
(equivalent to sites 224-232 and 664-673 on the
Glycine malecule) were eliminated from analysis
as suggested by Swofford & Olsen (199¢0). Those
base pairs corresponding to the 25e forward 185
rDNA PCR primer (positions 1-20) were removed
from the analysis. Similarly, these base pairs cor-
responding to the 1769 reverse PCR primer (sites
1810-1853 on the alignment 1764-1807 on
Glycine) were eliminated. With the exception of
the excluded base pairs, alipgnment of the 185 rDNA
sequences was straightforward because most length
mutations involve single base insertions or dele-
tions.

The total length of the rbcL data matrix was
1431. However, the first 30 base pairs were not
used, because, after amplification, this portion of
the gene is identical to the Z1 forward amplification
primer. Sequences of Nymphaea, Houttuynia, and
Ranunculus were incomplete (see Table 2); “?7
was used to indicate missing sites.

PHYLOGENETIC ANALYSES

Minimum-length Fitch parsimony trees were
constructed using PAUP versian 3.1.1 (Swofford,
1993} with MULPARS and TBR branch swapping.
Given the number of taxa (62), only heuristic search
strategies could be employed. Both data sets were
analyzed giving all changes equal weight. Trials
using the character-state transformation weighting

model of Albert et al. (1993) for the rbeL matrix
and a transformation matrix encompassing a 10:1
bias favoring transitions over transversions for the
18S rDNA data gave similar reanlts as trials with
equal weighting. To determine whether multiple,
equally parsimonious “islands” of most parsima-
nious trees exist (Maddison, 1991}, 100 replicate
searches with random taxon addition were con-
ducted. To obtain estimates of reliability for mono-
phyletic groups, hoatstrap (Felsenstein, 1985)
analyses {100 replicates) were conducted. For both
data sets, the bhootstrap analysis was performed
using simple taxon addition, TBR branch swapping,
ACCTRAN character-state optimization, and un-
weighted characters.

The phylogenetic trees derived from the global
rbcL analyses of Chase et al. (1993) were used to
canstruct a “reference tree’ far the subset of taxa
used in this study (Fig. 2). This reference tree was
also constructed to assess the effect of taxon sam-
pling and density on the stability and composition
of varions clades as determined by the present
analyses. The Search Il strategy employed by Chase
et al. (1993) resulied in 3900 shortest trees, one
of which was chosen at random and depicted in
their figure 2B. Search II was preferred by the
authors {over their Search [) becanse it included
a greater diversity of taxa, was able to save more
trees of shortest length, and did not use relative
weighting of character-state transformations. In
figure 2B af Chase et al. (1993), the angiosperms
were divided into 19 major groups, the composition
of which varied from single genera to groups of
many families. Owing to lack of an 188 rDNA
sequence, the reference tree constructed here does
not include four of the major rbel clades: Cera-
tophyllum, Gunnera, Laurales, and Asterid V. The
Asterid V clade was not in the Search II topolagy
of Chase et al. (1993), but Asterid V included
Santalales in the tree resulting from Search I. It
is well-known that sampling affects tree topologies
(Felsenstein, 1985); the reference tree of Figure

Ficune 2.

—

The “reference tree” constructed from the topology found in tree 2B in the glohal rbcL analysis that

included 499 taxa (Chase et al., 1993). This tree represents a null hypothesis that assumes rbeL s insensitive to
taxon sampling, i.e., all topologies using fewer taxa are fully concordant with the global topalagy. Instances where
Two generic names are given represent cases where different generic representatives of a family were used (rbel
taxon first followed by 183 rDNA taxon in parentheses). Those taxa in italics were not included in the study by Chaze
et al. (1993); their placement on the tree is derived from the analysis reported here (e.g., Santalales) or hased upon
traditional familial classifications {e.g., Hydrocotyle, Apiaceae). The names of the major angicsperm clades (right
side) correspond ta Chase et al. (1993). Taxa marked with an asterisk (*, Santalales and Paeonia) were located on

the Asterid V clade in Search I of Chase et al. (1993).
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Zamia
Ephedra
Gnetum
Peperamia
Houttuynla
Aristolochia
Saruma
Asarum
Acorus
Sparganium
Oryza

Zea

Drimys
Nymphaea
Ranunculus

Mahonla (Podophyllurm}

Akebia

Lambertia (Knlghtia)
Pachysandra (Buxus)
Spinacia

Opilia

Schoepfia
Misodendran
Gaiadendron
Santalum

Osyris
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2 should therefore be interpreted as a null hy-
pothesis that assumes rbell is insensitive ta taxon
inclusion and that the topology of a restricted anal-
yais is congruent with that of a glohal analysis.

RESULTS
GENERAL FEATURES OF rbel AND 185 rDN4

The length of rbcL is highly conserved in higher
plants with few insertion/deletion events reported
(Chase et al., 1993). Positians 1426-1428 form
the most common stop codan, although longer
reading frames up to 1458 bp have heen reported
in Asteraceae (Kim et al., 1992). Amang the taxa
analyzed herein, a single insertion of three bases
ocecurs in Zea heginning at position 1404, whereas
all other full length récl sequences used herein
are of length 1428. For rbeL, 482 (33.6%) of the
1431 base positians are potentially phylogeneti-
cally informative. The length of complete 183 rDNA
also varies: 1800 bp (Lycopersicon), 1804 bp
(Brassica), 1807 bp (Glycine),” 1809 bp (Zea),
1812 bp (Oryza), and 1813 bp (Zamia). Of the
1853 positions for the 183 rDNA alignment, 341
(18.4%j are potentially phylogenetically informa-
tive. o

When one compares sequences af two distantly
related taxa, for example, Zamia and Pisum (Fa-
baceae) for rbel and Zamia and Glyeine {Faba-
ceae) for 185 rDNA,athe rbcL sequence compar-
ison vields 191 mutational differences (13.3% of
the 1431 sites), whereas camparison of 188 se-
quences vields 138 differences (7.6% of the ca.
1810 sites). Similar comparisons using angiosperms
shaw that rbcL is generally about three times more
variable than 183 rDNA. For example, camparison
of Pisum and Spinacia rbel sequences deman-
strates that 139 of the 1428 sites (9.7%) are
different. In contrast, a similar comparison of Gly-
cine (Fabaceae) and Spinacia 183 rDNA sequene-
es indicates that anly 62 of the ca. 1808 (3.4%)
sites are different. Not only is the rate of evolution
of rbeL considerably higher than that of the 185
gene (about 3 times faster), but even when the
greater length of the 188 gene is taken into con-
sideration, rbcL still exhihits approximately 1.4
times as many variable sites as. 185 tDNA. The
distribution of variahle sites for the two molecules
is also quite different. When the number of steps
from one of the equally most parsimonious rbcL
and 185 rDNA cladograms (e.g., Figs. 6 and 8,
respectively) is plotted against site, the different
variability patterns are graphically illustrated {Figs.
3 and 4). For rbel, sites in general are more
variable, and, although certain regions clearly are

more variable than others, this variahility appears
more evenly distributed over the entire length of
the molecule (Fig. 3) than for 185 (Fig. 4). That
is, 185 rDNA shows highly variable regions inter-
spersed with regions of extreme conservation (Fig.
4). Significantly, the variable damains indicated on
the secondary structure of Glycine (V1-V9, Fig.
1) ean be readily identified in Figure 4. The sec-
ondary structural study conducted by Senecaff &
Meagher (1992) used dimethyl sulfate to modify
(and thereby identify} adenine and cytosine resi-
dues of single-stranded portions of the soyhean 183
rRNA molecule. Their data largely confirm the
higher-arder structure shown in Figure 1, especial-
ly for variable regions 1 and 4.

Pairwise 1858 rDNA sequence comparisons with-
in the flowering plants examined here indicated
that most angiasperms differ from the above noted
Glycine sequence at anly 1-5% of the sites. Higher
than average rates (numhbers) of nucleatide suhasti-
tution in 185 rDNA can be seen, however, in
certain parasitic plants such as members of Via-
caceae and Cuscutaceae (included in the present
study) and Balanophoraceae, Hydnoraceae, and
Rafflesiaceae (Nickrent & Starr, 1994). Repre-
sentatives of the latter three families were not in-
cluded herein because they apparently lack an rbcL
gene (Nickrent & dePamphilis, unpublished data).
The causes of such elevated rates of 183 sequence
evolution are currently under investigation by the
first author.

For both data sets, transitions outnumber trans-
versions by appraximately™a factor of two. For the
rbel data set, there were 1520 unambiguous tran-
sitions and 862 unambiguous transversions; for
185 rDNA, there were 1099 and 574 unambig-
uous transitions and transversions, respectively. The
specific types of mutational events for the twa
molecules are also very similar, differing mainly in
the frequency af the A to G transition (14.6% of
the tatal changes for rbel, 5.3% of the total far
185 rDNA). Steps calculated over the rbcl tree
by codon pasition demonstrate that most changes
occur, as expected, in the third pesition followed
by first and second pasition.

PHYLOGENETIC ANALYSES

rbel. The heuristic search of the rbcL data ma-
trix yielded 12 most parsimanious trees, all in one
island, of length 3090 with a cansistency index
excluding uninformative substitutions (C.I.—) of
0.284 and retention index (R.1.) of 0.467. The strict
consensus tree js {llustrated in Figure 3. The main
differences among the 12 most parsimoniaua trees
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were the relationships among members of Santal-
ales and in the relative position of Lambertia to
nonpalecherb dicots. The strict consensus tree
shares a number of features with the rbeL refer-
ence tree (Fig. 2). Using Zamia as the outgraup,
the two representatives of Gnetales (Ephedra and
Gneturm) form a monaphyletic group strongly sup-
ported by 66 synapomorphies that is sister to the
angiosperms (Fig. 6). The angiosperms form a
monophyletic group united by 39 base suhstitutions
{bootstrap value of 33%). Within the angiosperms,
the monocots examined {Zea, Oryza, and Spar-

ganium), with the exception of Acerus, are the,

sister group to all other angiosperms. This rela-
tionship differs from the reference tree where the
monacats, including Acorus, are manophyletic and
are sister to the Magnoliales/Paleoherbs IT group.
In the present analysis, the Paleoherbs I group
(Houttuynia, Peperomia, Asarum, Saruma, and
Aristelnchia) is disrupted by the inclusion of Aco-

rus and Drimys (Magnoliales). The Ranunculids
(Akebia, Mahonia, and Ranunculus) have the
same composition and general topology as seen in
the reference tree. This latter clade is part of a
trichotomy in the sirict consensus tree of Figure
5 that alse comprises Lambertia (the single rep-
resentative of the Hamamelid I group) and the
remaining dicots. The present analysis of rbcl
sequences does not include the closest relatives of
Lambertia (i.e., Sabia, Nelumbn, Platanus) as
determined in the Chase et al. analysis. Pachy-
sandra, representing Hamamelid -1, aceupies a
similar position on the strict consensus and refer-
ence trees. Several of the remaining clades have
taxon compositions identical ta those of the ref-
erence tree, although the topologies within these
clades are not necessarily identical to those of the
reference tree. These clades of identical compa-
sition include Asterid III (Pyrole, Polemonium,
and Impatiens), Rosid I1 (Brassica, Tropaeolum,
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FICURE 4. Variability histogram for 185 rDNA. The number of steps were determined from 185 (DNA tree
number 5 (of 26 equally parsimonious trees) as shown in Figure 8 with the interval widths set 1o four base pairs.
Regions of variability,” generally concentrated in the variable domains (Fig. 1), are interspersed with extremely

conserved sites over the 1853 total sites for the molecule.

and Gossypium), Santalales, Asterid II (Pittos-
porum, Hedera, and Hydroeotyle), and Asterid 1
{Lycoperiscon and Convolvulus). The members of
Asterid IV (Hydrangee, Cornus, and Nyssg) do
not form a monophyletic group herein, but de
appear near each other at the base of the Asterid
I and IIL groups. The sole representative of the
Caryaphyllids, Spinacia, was positioned within the
Rosid I clade as opposed to sister to Santalales on
the reference tree. The position of Caryophyllids
differed also in the two searches conducted by
Chase et al. (1993).

In our 62-taxa rbcL. analysis, the Rosid I and
Bosid III clades are nearly identical in composition

to those of Chase et al. (1993). In our strict con-
sensus tree, all taxa of the Rosid I clade, with the
exception of Francoa and the addition of Spinacia,
form a monaphyletic group (compare Figs. 2 and
5). However, the omission of Frencea from this
clade again likely reflects taxon density. The closeat
relatives of Francoa based on the Chase et al.
(1993) analysis (Greyia, Viviana, Wendiia) were
not included herein. With the exception of Paeon-
ia, Rosid III also appears as a monophyletic group
in our analysis of rbel sequences. One should
regard this difference with great caution given that
the position of Paeonia shifts dramatically between
the two searches of Chase et al. (1993). The San-

Ficure 3.

—

The strict consensus tree of 12 equally mast parsimonious cladograms derived from a heuristic search

of the 62-taxon rbel matrix; tree length = 3104, C.I. minus uninformative sites = 0.283, R1 = 0.463. Groups
whose compositions are identical to those of the reference tree (Fig. 2} are indicated by solid braces. Graups that
appear para- and polyphyletic (relative to the reference tree) are indicated by dashed braces. The pasitions of underlined
taxa (Acerus and Francea) differ significantly from those expecied from the reference tree (monocots and Rosid I,

respectively),
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talales form a monophyletic group in the present
analysis, and their position here as sister to the
Asterid clades is sitnilar to the results of Search [
of Chase et al., where the Santalales {(represented
in Chase et al. only by Phoradendron, Schoepfia,
and Osyris), along with Gunnera, appear as the
sister to all other asterids. In contrast, in Search
Il of Chase et al., the Santalales appear as sister
to a clade containing the Caryophyllids. In the
detailed analysis of rbcL sequences of asterids con-
ducted by Olmstead et al. (1993), Santalales are
not a component of Asteridae sl. and they are
likely members of a broadly defined rosid clade.

Boatstrap values and branch lengths of the 62-
taxa rbcL tree (Fig. 6) suggest the presence of
saveral strongly supported major clades within the
angiosperms. The monocots, Palecherbs, and Mag-
noliales (represented by Dlrimys) appear as the
sister to the remainder of the angiasperms, which
are supparted as a monophiyletic group by a high
hootstrap value (92%). This large clade comprises
most of the taxa included in the corresponding
clade of Figure 2 and represents the “eudicots,”
which have triaperturate or triaperturate-derived
pollen (Donoghue & Doyle, 1989; Cliase et al.,
1993; Qiu et al., 1993). Within this large eudicat
clade, the Ranunculids, Lembertia, and Peachy-
sandre appear as the sister to anather large, strongly
supported clade (bootstrap value of 91%). There
are, however;:féw strongly supported subclades
within this large clade. Subelades that received
maderate to strong siipport (bootstraps of 70-80%)
include ‘the Asterid I, II, ITI, and IV, Rosid II,
Rasid III minus Paeonia, and Santalales, Within
the Santalales, the monophyly of the mistletee fam-
ily, Viscaceae, is supported by a bootstrap value
of 86%,

188-rDNA.  Cladistic analysis of the 188 rDNA
matrix yielded 26 equally parsimonious trees of
length 2021, all in one island. Each of these trees
had a C.I.— of 0.301 and an R.L. of 0.440. The
strict consensus tree (Fig. 7) reveals that the Gne-
tales again appear as the sister to the angiosperms
and that the angiosperms form a well-supported
monophyletic group (bootstrap value of 100%, Fig.
8). Most clades in the 188 consensus tree are
derived from a large polytomy, whereas the rbeL

consensus tree (Fig. 5) displays considerable res-
olution. In the 188 analysis, the monacots Zea,
Oryza, and Sparganium (minus Acorus) form a
monophyletic group (bootstrap value of 91%) as
does each of the following: Ranunculids, Rosid III,
Santalales, Asterid I, and Asterid II.

A baotstrap analysis of the 185 rDNA data set
(Fig. 8) indicates that Acorus and then Nymphaea
are the sisters to a large clade containing the re-
tmaining angiosperms; however, these relationships
received only weak support {(bootstrap values less
than 50%). A group of palecherbs (Asarum, Sar-
uma, Aristolochia, Houttuynia, and Peperomia)
then appears as the sister to all remaining taxa.
The large remaining clade corresponds, with one
exception, to the “eudicots,” as defined by Chase
et al. (1993). The main discrepancy in the com-
position of eudicots between the rbcL tree and the
188 rDNA tree pertains to the relationships of
Drimys: in contrast to the rbel, tree, the 185 tree
places Drimys in the eudicot clade as sister to
Glycine. The 188 eudicot clade is defined by only
six basge suhstltutlons (Fig. 8) and is not present in
the strict consensus tree {Fig. 7), whereas in the
rbcL analysis, 22 base substitutions support this
clade, and the bootstrap value is high (92%) (Fig.
6).

Despite the poorer resolution of the 185 than
the rbcL tree, several subclades appear in hoth
analyses. For example, the three genera of Aris-
tolochiaceae {(Asarum, Seruma, Aristolochia) form
a monophyletic group, but the assaciation with
Houttuynia and Péperomia, the other subclade of
the Palecherh I group of Chase et al. (1993), is
only weakly supported (hootstrap value less than
50%). The genera of Ranunculids (Akebia, Ma-
hanig/ Podophytium, and Ranunculus) also form
a monophyletic group in both trees, although the
position of this clade is different.

Relationships within and among the several rosid
clades show similarities in the 185 rDNA and rbcL
trees, as well as several marked differences. 185
rDNA sequence data corroborate the results of
rbcl. sequence analysis in suggesting close rela-
tionships between some members of the Rosid [
clade (Fig. 8, Alnus (representing Betulaceae), Mo-
rus, Prunus, Francoa, and Malpighia (repre-
senting Malpighiaceae)). In both the 185 and rbel

—

FIGURE 6. One of the 12 equally most parsimonjous phylograms (cladograms that show branch lengths) derived
from the heuristic search of the 62-taxon rbcL matrix; tree length 3090, C.I. mihus uninformative sites = 0.284,
R.I. = 0.467. Numbers above the hranches indicate branch lengths (i.e., number of steps or nucleotide substitutions).
Numbers below the branches indicate the percentage of trees (from 100 hootstrap replications) that support that
node. Branches without bootstrap percentages were found in less than 50% of the trees.
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sequence analysis, a close relationship is apparent
between Lepuropetalon and Euonymus, and also
Morus and Betulaceae. Hawever, the position of
Linaceae (represented by Reinwardtia in the rbeL
analysis and by Linum in the 188 analysia) differs
markedly between the 185 and rbcL trees. Rein-
wardtia is part of the Rosid I clade in the rbcL
tree, whereas Linum is only distantly related to
other Rosid I taxa in the 18S trees. Similarly, the
placement of Fabaceae differs in the two analyses
with Pisum appearing with other Rosid I taxa in
the rbeL tree, but with Glyecine appearing aa the
sister of Drimys in the 1885 tree.

Both 183 and rbcL sequence data suggest a
close relationship between Brassica and Tropaco-
tum {(Rosid IT; see Rodman et al., 1993). However,
the placement of Gossypium differs markedly in
the two trees. In the rbel. tree (Fig. 5), Gossypium
is the sister of Brassica and Tropaeolum; all three
genera are part of the Rosid Il clade of Chase et
al. (1993). In contrast, Gossypium is the sister of
Impatiens in the 185 tree (Fig. 8) and is well
removed phylogenetically from other Rosid I taxa.

Phylogenetic analyses of 1885 and rbeL sequenc-
es also agree in suggesting a close relationship
among Chrysosplenium, Heuchera, and Ribes,
members of the Rosid TII clade of Chase et al.
(1993). The 188 analysis also places Paeonia in
this clade, as does one of the two searches of Chase
et al. (1993). Bath analyses also concur in rec-
ognizing a well- aupported monophyletic Santalales,
although the position of this large clade differs
between the two analyses. In the rbel. tree, San-
talales appear as the sister to members of Asteridae
sensu lato (Olmstead et al., 1993), whereas in the
188 analysis (Fig. 8) Santalales form the sister
group of the Rosid III clade.

Several of the relationships among Asterid taxa
seen in the rbel analysis are also found in the
shartest 1885 trees. For example, Lyecopersicon and
Convalvulaceae (represented by Convolvwins and
Cuscuta in the rbel and 188 analyses, respec-
tively) are sister taxa in both analyses. These taxa
represent the Asterid I group of Chase et al. (1993).
Similarly, the Asterid II graup of Pittosporum,
Hedera, and Hydrocotyle form a monophyletic
group in bath analyses. The Asterid IV subclade
(Chase et al., 1993) that includes Nyssa, Cornus,

and Hydrangea (along with Gilia, Polemoniaceae)’

also forms a subclade in the 185 analysis. In the
rbeL. consensus tree, these three genera do not
form a monophyletic clade but are clasely allied
basal members of an Asterid assemblage.

In contrast to these similarities between the 183
and rbcL trees, the placement of those taxa rep-

resenting the Asterid III clade (Chase et al., 1993)
differs between the most parsimonious 185 and
rbeL trees. In the 185 analysis (Fig. 8), Polemon-
iaceae (represented by Gilia) and Monotropa ap-
pear in clades with other Asterids. As previously
mentioned, Impatiens emerges as sister to Gos-
sypium. In contrast, Polemonium, Pyrola (a genus
closely allied with Monotropa, Kron & Chase,
1993), and Impatiens form a subclade allied with
the Rosid T clade in the shortest #bel trees. This
difference, however, may well reflect taxon density
given that Polemonium and Pyrola are part of the
Asteridae sensu lato when larger numbers of rbel
sequences are analyzed (Chase et al., 1993; Olm-
stead et al., 1993).

Several other placements and relationships differ
dramatically hetween the 188 and rbeL trees. These
include the phylogenetic positions of Buxus, Gos-
sypium, Spinacia, and the sister-graup relation-
ship of Drimys and Glycine suggested hy the 185
analysis. The same close. relationship between Dri-
mys and Glycine was alsd seen in the ribosemal
RNA phylogenetic analysis of Hamby & Zimmer
{1992).

Relationships within Santalales. As noted
above, we analyzed Santalales in more detail to
compare the resalution of 188 and rbcL sequence
data at lower taxonomic levels. The rbel sequence
data reveal the presence of three clades within the
order: (1) Gaiadendron, Mf_sodendron, Schoepfia,
Opilia; (2) Antidaphne, Eubrachion, Osyris, San-
talum; and (3) Arceughobium, Dendrophthora,
Phoradendron, Ginalloa, Korthalselly, Notho-
thixos, and Viscum. The first group, minus Opilia,
is strongly supparted (bootstrap value of 88%) as
are the second (82%) and third groups (86%).
Analysis of 188 sequences reveals a very similar
pattern of relationship. The Viscaceae form a
monophyletic group (88% bootstrap value). Con-
sidering group 2, Antidaphne, Eubrachion, and
Santalum form a monophyletic clade, with Osyris
as their sister. Lastly, Gaiadendron, Opilia, and
Schoepfia form a subclade {minus Misodendron)
that clasely corresponds to the rbel group 1.

Discussion

The goal of this project was not to resolve higher-
level relationships among the angiosperms, but
rather to evaluate the phylogenetic potential of
complete 185 rDNA sequences through a com-
parisan of malecular phylagenies derived from hoth
rbeLl and 185 rDNA using similar taxon sampling
and identical density and familial representation.
The enormous phylogenetic potential of rbeL se-
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quences is now well documented by numerous stud-
jes. In contrast, the phylogenetic utility of entire
plant small-subunit ribasomal RNA sequences may
have been underestimated. The recent study of
Hamby & Zimmer (1992) certainly suggested that
partial 185, as well as 2685, sequences might help
resolve the deepest branches of angiosperm phy-
lageny. Nickrent & Franchina {1990) had previ-
ously demonstrated that complete sequences of the
188 region held considerable phylogenetic poten-
tial. The present study further illustrates the phy-
logenetic potential of entire 185 rDNA sequences.

The present study indicates clearly that the rate
of evolution of 185 +DNA is lower than that of
rbeLl. The percentage aof sites that are potentially
phylogenetically informative is almost twice as high
for rbel. as for 185 rDNA (33.6% vs. 18.4%).
However, because the 188 region is almost 400
bp longer than rbel, the ratio of the number of
phylogenetically infarmatiye sites per maolecule is
only about 1.4 times grditer for rbeL. compared
to 185 rDNA. Thus, the amount of variation af-
farded per molecule is more comparahble than sug-
gested by rate of evalution alone. Because the
number of variable sites in 185 rDNA is lower than
far rbcl., complete sequencing of the entire 18S
region becomes more critical for phylogenetic in-
ference. Not only daes this approach maximize the
number of variable sites, but complete sequencing
concomitantly: facilitates proper alignment of 185
sequences. The two molecules also differ greatly
in terms of the distribution of variation along each
respective DNA region (Figs. 3 and 4). That is,
base substitutions are spread much more evenly
across the entire length of rbel than for 1835
rDNA.

Considerable variation in the evolutionary rate
of rbeL has been shawn within the angiosperms
(Wilson et al., 1990; Bausquet et al., 1992; Chase
et al., 1993). Although lineage rate asymmetry
can contribute to spurious branch attractions (Hen-
dy & Penny, 1989; Albert et al., 1993), it may
nat be extensive enough between angiosperm lin-
sages to be problematic in terms of phylogenetic
recanstruction given sufficient taxon density (Chase
et al., 1993). The extent of heterogeneity of evo-
lutionary rates among mast plant lineages for 188
rDNA is not yet known. Unequal rates of 188
rDINA sequence evolution are suggested, however,
for some Santalales and other parasitic plants, which
exhibit an accelerated rate of evolution compared
to other angioaperms (Nickrent & Franchina, 199¢;
Nickrent & Starr, 1994). The number of nucle-
otide substitutions per site (K) in pairwise com-
parisons among five nonparasitic angiosperms ay-

eraged 0.036 for 185 rDNA (Nickrent & Starr,
1994). In contrast, pairwise comparisons using an
obligate hemiparasite {Arceuthobium) and several
holaparasites (Prosopanche, Balanophora, Raf-
flesia, and Rhizanthes) result in a mean K value
of 0.115 (Nickrent & Starr, 1994). Investigations
of other heterctrophic angiasperms such as Phol
isma (Lennoaceae) and Cuscuta (Convolvulaceae)
have revealed similarly high substitution rates
(Nickrent & Colwell, 1994). Accelerated substi-
tution rates may alsa be present in Lepuropetalon
and Peperomia based an the very long branch
lengths these taxa exhihit (56 and 46, respectively).
These long branch lengths could, however, simply
be an artifact of the low taxon density of this
analysis. It is noteworthy that Peperamia and Le-
puropetalon also have much longer branch lengths
than do their sister taxa in the rbeL tree depicted
herein (Fig. 6), but this was not the case in the
larger analysis of Chase et al. (1993) in which
cloger relatives of these taxa were included. Re-
gardless of the cause of the long branch lengths in
Peperomia and Lepuropetalon, the phylogenetic
position af these taxa is similar in both the 188
and rbcL trees shown herein.

Ta evaluate the phylogenetic potential of 185
rDNA sequences, it is also important to elucidate
the impact of secandary structure-of the 185 rRNA
transeript on phylogenetic reconstruction. As re-
viewed recently (Dixon & Hillis, 1993), major
questions remain regarding phylogenetic analysis
of rRNA or rDNA data. These questions include:
should loop bases {non-pairing bases) and stem bas-
es (pairing bases) both be used in phylogenetic
reconstruction and, if so, should bases from each
class (stems and loops) be considered equally in-
formative and independent? Wheeler & Honeyeutt
(1988) recommended that stem base nucleotides
be eliminated from phylogenetic analyses, or
weighted by one-half. In contrast, in a detailed
analysis of 285 rRNA genes from vertebrates, Dix-
on & Hillis (1993) found that characters from both
stems and loops contain phylogenetic infarmation.
In addition, they found that stem bases sustain a
greater number of compensatory mutations than
would be expected at random, but the number of
such mutations was less than 40% of that expected
under a hypothesis of perfect compensation to
maintain secandary structure., Dixon and Hillis
therefore suggested that the weighting of stem
characters be reduced by na more than 20% rel-
ative 10 loop characters in phylogenetic analyses.
In an analysis of 185 rRNA sequences from echi-
naderms, Smith {1989) similarly reported that
paired nucleotides were phylogenetically informa-
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tive. Although the methods are at present not fully
developed, incorporation of information from rRNA
secondary (and tertiary) structure in phylogeny
reconstruction algorithms is taking place (Van de
Peer et al., 1993). These issues will require more
attention in future phylogenetic studies of plants
that use rDNA.

Our comparison of a similar snite of 62 taxa for
both rb¢cL and 188 cDNA sequences yielded phy-
logenetic trees with a number of similar features,
although we emphasize again that these trees should
not he viewed as rigorous phylogenetic hypotheses
for angiasperms. Both analyses revealed a well-
supported monophyletic Gnetales as sister to a
monaophyletic Magnoliophyta, a resylt nat too sur-
prising given the sampling of taxa used. Within
the angiosperms, both analyses revealed a mono-
phyletic group of monocots (Zea, Oryza, Spar-
ganium) that did not include Acorus as sister to
other angiosperms. The distingtiveness of Acorus
within the monocots was recently emphasized by
Duvall et al. {1993). In both analyses, Nymphaea
oceurred in a similar position as sister to all other
dicots. Both 188 rDNA and rbel analyses rec-
ognized several identical clades, including two groups
af Paleoherhs (Houttiynia, Peperomia; and As-
arum, Saruma, Aristolochia), Ranunculids (Ak-
ebia, Berberidaceae, Ranunculns), several groups
of Rosids (Brassica, Tropaeslum; Morus, Betu-
laceae; Lepuropetalon, Fuonymus; Chrysosplen-
ium, Heuchera, Ribes), Santalales, and several
groups of Asterids (Pittosporum, Hedera, Hydro-
cotyle; Lycopersicon, Convolvulaceae). On a
broader scale, very similar patterns of relatianship
are suggested among many of the Rosids and As-
terids. Furthermore, both analyses suggest the
presence of a large eudicot clade. At a lower tax-
anomic level, nearly identical subclades were re-
vealed within the Santalales by hoth 185 rDNA
and rbel. sequences. The degree of resolution
achieved within Santalales vsing 185 rDNA se-
quences may, in part, reflect the accelerated rate
of evolution of this region in this group of plants
(Nickrent & Franchina, 1990; Nickrent & Starr,
1994).

The fact that phylogenetic analysis of 185 rtDNA
sequences for 62 taxa reveals relationships within
angiasperms very similar to those obtained for a
similar suite of taxa using rbcL sequences strongly
suggests that questions af higher-level phylogeny
in the angiosperms, as well as in seed plants in
general, can be addressed with entire 185 rDNA
sequences. The differences between the 185 and
rbel trees compared herein could, in large part,
reflect taxon density, and also the use of different

genera to represent some families (e.g., Palemon-
iaceae, Buxaceae, Convolvulaceae). Furthermore,
the differences between the phylogenetic relation-
shipa gleaned fram rbel. and 188 rDNA data may
derive fram their being, respectively, plastid and
nuclear-encoded gene trees, neither of which per-
fectly represents the true species tree. Qur analyses
reinforce the findings of others (e.g., Nickrent &
Franchina, 1990; Martin & Dowd, 1991; Hamby
& Zimmer, 1992; Conran & Dowd, 1993; Haot
at al., 1995, this issue) in suggesting that sequenc-
ing of the 185 rDNA region holds considerable
phylogenetic potential.

Althaugh comparative sequencing af the entire
18S rDINA region holds patential for inferring phy-
logeny, we stress that this nuclear region will almost
certainly not elucidate familial and generic level
relationships to the extent possible with rbel. se-
quences simply because af the slower rate of evo-
lution and lawer overall number of base substitn-
tions of 185 rDNA compared to rbcl. Whereas
comparative rbecl sequencing has been used to
resolve relationships within some angiosperm and
gymmnosperm families,"ﬁlcludi.ng Onagraceae (Conti
et al., 1993), Rosaceae (Morgan et al,, 1994},
Saxifragaceae 5.5, (Morgan & Soltis, 1993), Tax-
odiaceae (Brunsfeld et al., 1994), Cupressaceae
{Gadek & Quin, 1993), and Ericaceae (Kron &
Chase, 1993), similar resolution with 188 sequenc-
es seems unlikely. In some santalaledn families such
as Viscaceae, 183 rDNA sequences have resolved
generic-level relationshjps in a fashion comparable
to that achieved via comparative rbeL sequencing,
However, it is likely that the ability to resolve
subfamilial and generic relationships in Santalales
with 188 sequence data was facilitated by the high-
er substitution rate for this region in these taxa.
Nanetheless, these results far Santalales illustrate
that, in same instances, 188 sequence variation
can be useful within families. Concomitantly, these
findings alsa indicate that the ability of 185 rDNA
sequences to provide sufficient resolution within
any particular order or family must be determined
empirically, just as for rbel.

This study suggests that comparative sequencing
af the 185 region shauld prove most useful for
addressing phylogenetic relationships at the family
level and abave. Qur results parallel those of Hoot
et al. (1995) who showed in an analysis of Lar-
dizabalaceae and other ranunculids that 188 rDNA
sequences are more conserved than the two chlo-
roplast genes employed (rbcL and atpB), but were
useful in resolving relationships above the level of
family. 188 rDNA sequence variation may be par-
ticularly well suited for addressing deeper phylo-
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genetic branches within the angiosperms and in
seed plants in general. The present study certainly
indicates that additional sequencing of the entire
183 rDNA region is justified to obtain a broad
sampling of angiosperms and other seed plants far
eventual comparison with rbel-based tree topolo-
giea (e.g., Chase et al.,, 1993). At present, anly
approximately 150 complete angiosperm 185 rDINA
sequences exist (compared to over 1500 rbeL se-
quences for angiosperms). Further 185 rDNA se-
quencing within the monocots, Magnoliidae, Car-
yophyllidae, Hamamelidae, and Dilleniidae (sensu
Cranquist} is especially needed to achieve greater
taxon density for the angiosperms.
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